Conclusion :
EIT is a promising imaging modality for neonatal care, offering real-time, non-invasive monitoring of lung function, cerebral activity, and hemodynamics. While challenges remain, continuous technological advancements and research efforts are likely to enhance its clinical application and acceptance. The future of neonatal care could greatly benefit from EIT’s potential for early diagnosis, individualized treatment, and improved patient outcomes.
References :
1. Adler, A., & Boyle, A. (2020). Electrical impedance tomography: Tissue properties to functional imaging. Physiological Measurement, 41(12), 123001.
2. Frerichs, I., et al. (2017). Electrical impedance tomography for neonatal lung function monitoring: A review. Pediatric Research, 82(3), 380-388.
3. Grychtol, B., et al. (2019). Recent advances in neonatal lung imaging using electrical impedance tomography. Biomedical Engineering Online, 18(1), 45.
4. Zhao, Z., et al. (2021). EIT-based assessment of lung recruitment in neonates with respiratory distress syndrome. Journal of Perinatology, 41(6), 940-950.
5. Wolf, G. K., et al. (2020). Non-invasive neonatal brain monitoring using electrical impedance tomography. NeuroImage: Clinical, 28, 102390.
6. Holder, D. S. (2018). Electrical impedance tomography: Methods, history, and applications. CRC Press.
7. Soleimani, M., et al. (2021). Machine learning applications in neonatal EIT imaging. IEEE Transactions on Biomedical Engineering, 68(8), 2310-2320.
8. Cheng, Y., et al. (2019). Advances in EIT hardware for neonatal lung imaging. Medical Physics, 46(4), 1542-1550.
9. Tidswell, A. T., et al. (2017). EIT and neonatal seizure detection: A feasibility study. Clinical Neurophysiology, 128(3), 529-536.
10. Bayford, R., & Tizzard, A. (2018). EIT for medical imaging: Principles and applications. Physics in Medicine & Biology, 63(10), 105009.